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Abstract-A spectral analysis is presented to investigate the onset of the 
convective instability in a fluid subject to a linear temperature gradient. 
The hydrodynamic theory is developed for the case of a binary system, where 
the concentration of one of the components is small. Therefore the present 
results will be applicable to the case of a Brownian system. We consider 
exclusively those modes which correspond to the central components of the 
spectral distribution, i.e., the diffusion mode and the thermal diffusivity mode. 
One finds that those modes are effected by the presence of the external tem- 
perature gradient in such a way that the spectrum of the scattered light should 
exhibit important narrowing of the thermal diffusivity peak and a slight 
narrowing of the diffusion peak when approaching the convective instability 
critical point. Only the thermal diffusivity mode is affected in the limit of a 
pure fluid. 

1. Introduction 

Instabilities occur in a wide range of situations in many Werent 
fields, including not only hydrodynamics and thermodynamics, but 
also chemical physics, biology, geophysics, urban growth, meteor- 
ology, and astrophysics. To date most of the work on these phenom- 
ena(lP2) has been devoted to macroscopic analyses and in particular 
to the study of the so-called marginal states. However, very little is 
known concerning the departure from the stability regime and about 
the dynamics governing the onset of the marginal state. 
Let us consider a simple-perhaps the simplest-example of such 
t Chercheur qualifih au Fonds National de la recherche Scientifique (F.N.R.S), 
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158 J . - P .  B O O N  

a situation : the BBnard problem. When a fluid layer is heated from 
below, the system undergoes a top-heavy arrangement which is 
potentially unstable (provided that the fluid has a positive thermal 
expansion coefficient). Therefore the fluid has a tendency to 
redistribute itself. As a consequence the temperature gradient 
must exceed a certain value before the instability can manifest 
itself. When the temperature gradient reaches this critical value 
(depending on the properties of the fluid and on the thickness of the 
layer) convection arises which permits the fluid to adjust. Convection 
however begins in a peculiar way, in that a stationary instability 
occurs, which results in an arrangement of convection cells or 
convection rolls, first demonstrated by B6nard in 1900.(3) The 
phenomenon described above has been studied by a number of 
workers, and particularly by Lord Rayleigh, BBnard, and Chandra- 
sekhar, who gives a detailed treatment of the linearized problem.(4) 
Thanks to these and other nonlinear studies, ( 5 )  the BBnard instability 
is quite well described and understood from the point of view of the 
macroscopic theory. The question now arises as to what are the 
dynamics of the fluctuations leading to the convective instability. 
In  order to explore this difficult question, one would like to probe 
the density fluctuations in the fluid which experiences an increasing 
temperature gradient until it reaches its critical value. Such a 
procedure could elucidate the evolution of different normal modes of 
the fluid and determine if they are increasingly affected while 
approaching the " Bknard critical point ". If so the onset of the 
convective instability would bear striking resemblance to second 
order phase transitions which are triggered by " soft modes ". 

In addition to the previous unanswered theoretical question 
regarding the evolution of the density fluctuations from the *equi- 
librium state up to the vicinity of the " instability critical point ", 
one is also interested in how the problem might be studied from an 
experimental viewpoint. For example, an experimental study could 
determine whether-and if so, when-classical hydrodynamics 
becomes invalid in treating density fluctuations in a system sub- 
mitted to an external force. 

Usually light scattering appears as a very convenient tool for 
obtaining the power-spectrum of the density-density correlations. 
In  the present case, because the modes which will be mostly affected 
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by the process are long wave modes (indeed the “soft mode” 
wavelength is of order of the fluid layer thickness, i.e., h -1 mm) 
experiments should be performed in the very near forward direction 
(k = 2k, sin 812, where 0 is the scattering angle and k,, the wavenumber 
of the incident light). This certainly represents a non-trivial 
technical difficulty, as probing the “ soft mode ” requires a scattering 
angle ~ I C P r a d i a n .  However as other modes of the fluid are 
expected to be also affected, it appears more easily feasible to look at  
those modes with the shortest wavenumber experimentally accessible. 
The question now is how are the modes of the fluid modified by the 
presence of an external field. To attempt to answer this question, 
we present in Sec. 2 a hydrodynamic theory for a binary system to 
obtain the linearized equations governing the evolution of the 
fluctuations when such a system is subject to an external linear 
temperature gradient. 

From the set of linearized equations, we derive, in Sec. 3, the 
dispersion equation, which is solved to determine the characteristic 
modes of the system. The last section is devoted to a discussion of 
the modifications these modes undergo when the system passes from 
the stability regime to the instability regime. The possibility of 
investigating such effects experimentally is also discussed. 

2. Hydrodynamic Theory 

hydrodynamic equations read :(4.6) 

Continuity Equation : 

Consider a binary system subject to an external force F. The 

a t p + v P v  = 0 ;  (2.1) 

( ~ ~ - V V ’ ) ~ V + V P - F  = 0 ;  (2-2) 

Momentum equation : 

Concentration equation : 

a , p c + v - v p c + v . i  = 0; 
Energy equation : 

1 1 a , s + v . V s + - V . ( q - ~ i ) + - i i V V t L  = O .  
P T  P T  
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160 J.-P. BOON 

Here p is the density; v, the velocity; v, the kinematic shear 
viscosity; p ,  the pressure; c, the concentration; s, the entropy 
density ; T, the temperature ; and p, the chemical potential. The 
external force, F, here is 

F = - g p l z ;  R = ( O , O , l ) ,  (2-5) 

where g is the gravity constant. 
The diffusion flux, i, and the heat flux, q, are given respectively by 

Vc+c( l  - c ) - V T + c ( l  D - c ) -  D“ D V p  1 , (2.6) 
D’ 

i + p i - t c V T ,  (2.7) 

with 

where 

and 

(2.10) 

(2.11) 

Here K is the thermal conductivity coefficient; D, the diffusion 
coefficient ; D’, the thermal diffusion coefficient ; and D”, the baro- 
diffusion coefficient. The dimensionless quantity kT is called the 
thermal diffusion ratio and is not independent of the transport 
properties of the fluid, since 4 which appears in Eq. (2.8) is defined 
through the diffusion flux, 

PD i = - - ( V p + f V T ) .  
PC 

(2.12) 

On the other hand, it is seen from Eq. (2.9) that the dimensionless 
quantity k ,  is entirely determined by thermodynamic properties 
above, and is usually a small quantity. Therefore unless there is a 
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considerable pressure gradient in the fluid, the last term in Eq. (2.6) 
may be neglected. For the sake of completeness, we shall keep all 
terms in the present treatment and omit those which appear as small 
quantities only when approximations are in order. We now define 
the physical conditions of the system: a fluid layer of thickness d 
(chosen in the z direction, whereas the dimensions of the system are 
infinite in the x,y plane) is heated from below in such a way that the 
system is subject to a linear adverse temperature gradient. Further- 
more, we consider the case of a dilute system (c < 1). Then from the 
hydrodynamic equations, the steady state is defined by 

V T ' =  - P A ;  (2.13) 

VPS = -gpoR, (2.14) 

D' D" 
Vcs  = dAcs E co ( p  + gpo T )  12, (2.15) 

where the subscript 0 refers to the initial equilibrium state (reference 
state). 

First order perturbation around the steady state yields 

(2.16) 

where 

1 - a ( T s - T o ) - ~ ( p s - p o ) + y c ( c s - c O  
U O  

with a, the thermal expansion coefficient, 

(2.18) 

y ,  the specific heat ratio, 

y == CPlC, ; (2.19) 

and uo, the sound velocity ( N 105 cm sec-l). Neglecting small 
terms (< a -10-3, i.e. the terms in the expansion which are pro- 
portional to a$ and those proportional to u ; 8 )  we obtain the density 
fluctuation as given by(6) 

6p = - apo8T + yp08c. (2.20) 

We now proceed to the linearization of the hydrodynamic equations. 
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162 J . - P .  BOON 

The procedure is straightforward for Eqs. (2.1) and (2.2), as we 
obtain for the linearized continuity equation 

at+ + pov. v = 0, 

(a t  - yv2)po~ + vsp + g A a p  = 0. 

(2.21) 

(2.22) 

and for the linearized momentum equation 

Linearizing the concentration equation yields 

at6C+V.VCs-DA = 0, (2.23) 

D‘ D’! 
D D A = V26c + cS - V26T + cS - V26p 

D’ D” 
D D + - (VC”V~T+VT”VV~C)+ - ( V C ~ * V ~ ~ + V P ~ * V ~ C ) .  (2.24) 

Noticing that 

cs = co(l  + O(kT, k,)) ; Vcs = O ( k r ,  kD) ,  (2.25) 

where kT and k, are small quantities ( 5  lo-%), we retain only first 
order terms in k~ and k ,  to obtain. 

[a ,  - D( V2 -:. v)] 6c +v . vcs 

- c,(DV26T + D” V26p) = 0. (2.26) 

Before linearizing the energy equation, we want to  make a change of 
thermodynamic variables by using the identity@) 

-pT[atC +v .  vc] .  (2.27) 

Combination of Eqs. (2.2), (2.4), (2.6), (2.7), and (2.27) yields after a 
few manipulations 

with 

D“ 
D V p  = pCVc + ~ T V T  + c - pEVp. (2.29) 
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Eq. (2.28) is now linearized. Accounting for the fact that only first 
order terms in kT, and k ,  are retained, we obtain 

a,6T + v  - VTs + ( y  - 1) 71 v - v  

K kT 
PO 

= - V26T +pckTD 

Now using the continuity equation (2.21) and the equation of state 
(2.20), one has 

1 1 Yc - v - v = - - ataP = a,m - - a,6c, 
a "Po 4 

which is substituted into Eq. (2.30) to yield 

where 

h' 

(2.31) 

(2.32) 

(2.33) 

is the thermal diffusivity coefficient. 
Now, substituting the equation of state (2.20) into the Navier- 

Stokes equation (2.22), and taking twice the curl (V  x V x ) of the 
result, we obtain 

(8, - VV2)V2w - g(Ve - aZ2)(a8T - yCSc) = 0, (2.34) 

where w is the z-component of the velocity v. To conclude this 
section, let us summarize the set of linearized hydrodynamic 
equations we have obtained for a two-component fluid layer subject 
to an external linear temperature gradient. With the definitions 

d ,  = pow ; dT = poST ; dc = po&, (2.35) 

we have 
(a, - vv2)v2a, - q(v2 - a,ycLd, - yea,) = 0, (2.36a) 
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164 J . - P .  BOON 

(2.36b) 

(2.36~) 

Notice that in the absence of external force (i.e. /3 = 0, Acs -- 0 )  one 
retrieves the usual hydrodynamic equations for a binary system at  
rest. (9) 

3. Instability ‘‘ Soft Modes ” 

The set of linearized equations (2.36) is most easily solved by 
Laplace-Fourier transformation. I n  performing the transformation, 
we introduce two approximations: k ,  being a small quantity we 
shall take the limit k ,  -, 0, and set yc = 0 in Eqs. (2.36) ; second, we 
shall neglect terms proportional to  k (or k , )  as being several orders of 
magnitude smaller than the other terms ( a k 2 ) .  We then obtain the 
set 

(s +vk2)k2J,(k,s)  - ag(k2 - k?)&(k,s) = k2d,(k,0),  (3.la) 

kT Ac8dz(k,s) + D  - k2&(k,s) 
TO 

+ (8 + Dk2)&(k,s) = d,(k,O), 

J , (k , s )  -t (8 + h’k2)dT(k,s) 

+ sdc(k,s) = dT(k,O) - ‘LT d,(k,O), (3.1~) 
11 G ,  

where s is the complex Laplace variable (s = E + iw) and the tilda 
denotes the Laplace transform. Notice that because of the first 
approximation, (yc = 0) ,  d c s ,  Eq. (2.15), reduces here to 
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From the above set of equations, (3.1), we derive the dispersion 
equation, which reads 

( S  + vk2)k2 - ag(k2 - k Z 2 )  0 

Ac* (S + D k 2 )  kT Dk2  - 
TO = 0 (3.3) 

or 

( S  +vk')(s + Xk')(s +I lk2 )  +S(S +vk2)dk2 - ( S  + 9k2)vk2A'k29 = 0,  (3.4) 

where 

and 

9 = R,/R,. 
Here R, is the Rayleigh number defined by 

with A, the thermometric conductivity coefficient 

and R, is the critical Rayleigh number 
k'3d4 

€2, = ___ k2 - k,' . 

(3.6) 

(3.9) 

The boundary conditions determine the possible values of R,. For 
two free surfaces, one has k ,  = nn/d ,  so that the minimum value of 
R, is 

(3.10) 

wherefrom one finds by a standard extremum calculation that R, 
is minimum for k& = d / 2 d 2 ,  which corresponds to a wavelength 
h = W 2 d .  The minimum values of R, are(*) 658 for two free surfaces, 
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166 J . - P .  BOON 

1101 for one free surface and one rigid boundary, and 1708 for two 
rigid boundaries. When increasing /3 up to a critical value such 
that R, = RPIN, a marginal state comes to prevail, and when R, 
exceeds R Y N ,  instability sets in. Hence the instability critical 
point corresponds to 9 = 1 in the dispersion equation and our 
purpose is to investigate the behavior of the characteristic modes 
when W varies from 0 to 1. 

Although it is always possible to solve exactly the cubic equation 
(3.4), it  is appropriate and convenient at this point to introduce a 
further approximation. Since we shall consider those modes which 
correspond to  the critical components of the power spectrum, we 
restrict ourselves to a frequency range such that w Q vk2, which is 
indeed appropriate for most usual liquids whose thermal dzusivity 
coefficient is one order of magnitude smaller than their coefficient of 
kinematic viscosity. Then Eq. (3.4) reduces to a quadratic equation 
whose roots read 

s* = - k" [A'(l -92) + 9 1  2 

+- -  [ A ' ( l - W ) + 9 ] 2 - 4 h ' D  [ 1 -  ( 1 + -  ;) 92 ] ) l j P  (3.11) 
k2{ 2 

Note that when there is no external force (92 = 0) one retrieves the 
usual modes characteristic of a binary system at equilibrium.(S) 
The above result can be rewritten as 

k= k2 
2 2 

t3* = - - (A" + 9) * - (X'  - 9) 

with 
A" = A'(1 - 9) (3.13) 

Now since A is small compared to D, and D itself is small with respect 
to A', expansion of the square root in Eq. (3.12) yields in first 
approximation 

Ak2 
1-92, 

s+ - 9 k 2 +  - 

Ak2 
1-93?. 

s- - A ' k z ( l - 9 )  - - 

(3.14) 

(3.15) 
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When kT = 0,  i.e. in the limit of a pure fluid, one obtains from Eq. 
(3.12) two exactly decoupled modes : ( 1 )  the diffusion mode which is 
unaffected by the external force 

S, = -Dk2,  (3.16) 

(where D is now the self-diffusion coefficient) and (2) the thermal 
difhsivity mode 

S- = - X'k'(1- 9), (3.17) 

which in the limit 9 = 0, gives the usual central mode of a pure fluid 
at equilibrium. These results are summarized in Table 1 and will be 
commented on in the next section. 

TABLE 1 

Thermal diffusivity mode k T = 0 k T f O  

/ 3 = 0  - X'k' - X'k' - Ak2 
Aka 

- X'kz(1 - 9) - - 1 - 9  .- h'k2(1 - 9) B + O  

Diffusion mode kT = o  kT+O 

/3=0 - Dkz - D k ' ( l - $ )  

Dkz A k z  
-k2+- 1 - 9  

4. Discussion 

Before discussing the results on the instability " soft modes ", one 
comment seems in order concerning the case of a binary system at 
equilibrium, i.e. the results given in Table 1, at k~ # 0, and = 0. 
One observes that as a result of the presence of a second component 
in the system, the thermal diffusivity peak should be broadened by 
an amount p,kTzDk2/C,T,, whereas a narrowing of p c k T Z D 2 k z ~ ~ ' C , T ,  
should occur for the diffusion peak. These opposite effects, although 
implicitly included in previous work,@) have not been to our know- 
ledge explicitly stated before. Although such effects are expected to 
be very small, it would be interesting if they could be observed 
experimentally. (10) 
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168 3 . - P .  BOON 

In  the presence of an external temperature gradient it is the 
thermal diffusivity peak which will be primarily affected. Indeed, 
although the second terms in the RHS of Eqs. (3.14) and (3.15) should 
blow up when R, = R,, the effect will actually be important only 
when looking at the characteristic " soft mode " of wavelength --d, 
and will be quite negligible for the other modes since d is a very small 
quantity. Therefore we shall essentially discuss the softening of the 
thermal diffusivity mode, and consider the case of a pure fluid sinm 
the effect on X'k2 is the same as in the case of a binary system. The 
power spectrum of the light scattered from entropy fluctuations (or 
density fluctuations at  constant pressure) is easily calculated from 
the hydrodynamic equations, once the poles are determined from the 
dispersion equation.t1') Under the conditions established in Sec. 3, 
i.e. for ( h ' / ~ ) ~  < 1 and w <vk2, we obtain 

(4.1) 

) S P (  - k , 0 ) M k W )  
SP ( - k,O)SP (k,O) 

2X'k2( 1 - Ra/Rc) 
d [ 1 +  2(R, /Rc)]  + (h'k2)'( I - R,/RC)' 

( I (k ,w)  = 

- - 

The peak height 

will increase with increasing p, the temperature gradient. Starting 
from 2(X'k2)--2, the usual value when the fluid is at equilibrium 
(R,  = 0) ,  the peak should diverge when the marginal state is reached, 
i.e. when R, is exactly equal to R, (see Fig. 1). The half width 

1 -RaIRc Aw = h'k2 
(1 + 2 R a / R p  

obeys the equation 

XY = G ,  
with 

(4.3) 

(4.4) 
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40 
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Figure 1. The power spectrum for different values of the Rayleigh number. 
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170 J . - P .  BOON 

In  other words, when increasing /?, the reciprocal width grows as a 
hyperbola, with an asymptote at X = 0, as shown in Fig. 2. 

An important shortcoming of the above theoretical discussion is 
that the spectral shape predicted in Eq. (4.1) must be scaled by the 
static correlation function ( 6 p (  - k,0)6p(k,O)) in order to produce the 
absolute scattering efficiency. This function cannot be obtained by 
the analysis presented here. The corresponding function at equi- 
librium, however, has a value sufficient to make the light scattering 
experiment feasible from an intensity point of view. 

3 
Q 
1 
-4 
Y 
4 

15 

10 

5 

I 

0 .s 

Figure 2. 
number. 

The reduced reciprocal half-width as a function of the Rayleigh 

Some of the difficulties involved in the experimental observation 
of the onset of the instability have already been mentioned in Sec. 1. 
As stated before, the shorter the wavelength, the less the mode will 
be affected and the less important the effect will be as compared to 
the softening of the soft mode itself; but the easier the experiment. 
An additional experimental difficulty should be accounted for. Since 
the width is smaller for longer wavelength modes, and thus less 
accurately measurable, the observation of the effect-4.e. the 
narrowing being smaller the shorter the wavelength-may appear as 
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a delicate operation. The feasibility of the experiment will therefore 
depend on obtaining a good compromise between these difficulties. 

One final remark seems in order. The smallness of the effect in a 
pure fluid (or in a binary mixture) is connected with the value of the 
thermal difFusivity. A possible way around this obstacle is to 
consider a Brownian system. Indeed utilizing particles in suspension 
to probe the density fluctuations would have the effect of replacing 
K/P&,, by the diffusion constant, D, of the Brownian particles, 
which is smaller by several orders of magnitude than the thermal 
Musivity. If for a Brownian system, there exists a corresponding 
Rayleigh number where Xv appearing in the denominator should be 
replaced by D2, then the effect would be significantly larger even for 
larger wavenumber modes (e.g. lo4 < k < lo5 for a suspension of 
polystyrene balls in water, with a diameter N loT5 cm and D - lo-* 
cmz sec-1). Furthermore the scattering from the Brownian particles 
is much more intense than the scattering from thermal fluctuations. 

We believe that such effects as predicted in the present work should 
be observable with the presently available techniques. Such pro- 
cedures would then comprise an interesting tool to investigate thermal 
instabilities in fluids, as it has proved to be in the case of hydro- 
dynamic instabi1ities.(l2) 
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Addendum 
A t  the time the present work was completed, the author was not 

aware of the work by V. M. Zaitsev and M. I. Shliomis (Soviet Physics 
J.E.T.P. 32, 866 (1971)) who, by a different method, are led essenti- 
ally to the same conclusions. 

However, essential differences between the Russian work and ours 
should be mentioned. Zaitsev and Shliomis treat the problem on the 
basis of the hydrodynamic fluctuations theory by introducing 
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the concept of fluctuation velocities and temperatures excited by 
random forces, Therefore their starting set of equations differs 
from ours by the presence of “injected” random terms, i.e. an 
“ extraneous stress tensor ” in the momentum equation, and an 
‘ I  extraneous heat flux ” in the energy equation. Following Landau 
and Lifshitz (Soviet Physics J.E.T.P. 5, 511, 1957) an anzatz is 
introduced for the autocorrelation of the extraneous forces and the 
equations are then solved by the eigenfunctions expansion method. 

This allows them to treat the problem for a single-component 
system with arbitrary geometry and rigid boundaries at the cost of 
mathematical complexity, whereas our method presents the ad- 
vantage of analytical simplicity with the restriction to systems with 
free boundaries. Zaitsev and Shliomis’ main goal is the analytical 
investigation of the behavior of the hydrodynamic fluctuations near 
convection threshold. In the present paper we essentially develop 
a simple method indicating the possibility of a light scattering 
experiment to probe the onset of the convective instability. 

Most important is the conclusion that the Russian work and the 
present paper confirm the belief that a divergence of the character- 
istic fluctuations power spectrum should occur at the convection 
threshold. Therefore in the immediate vicinity of the instability 
critical point, the linear treatment used in both papers should be 
expected to become invalid. It should also be mentioned that the 
brackets in Eq. (4.1) of the present paper, as well as in Zaitsev and 
Shliomis’ work (see footnote 2 in their paper), denote an ensemble 
average over the steady state of the system. Although such a 
procedure is strictly valid only for a system at thermodynamic 
equilibrium, the extension of the averaging procedure should be 
applicable to the present case, since local thermodynamic equi- 
librium is assumed. However, when deviations from equilibrium are 
no longer small, the procedure becomes questionable, as in the 
immediate vicinity of the convection threshold. 

It is important to notice that the analogy between the phenomenon 
considered herein and a second order phase transition (as suggested 
in the present paper and in the Russian article) is essentially phenom- 
enological to the extent that the “soft mode ” picture provides a 
satisfactory description in both cases. The analogy has to be 
understood in terms of a translation from the molecular description 
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language used for phase transitions to the hydrodynamic mode 
language used for instability phenomena. 

On the other hand it is worthwhile to  mention that at the level of a 
microscopic analysis there is presently no evidence for an analogy 
between hydrodynamic or thermal instabilities and phase transitions 
for the very reason that the microscopic mechanism governing the 
evolution of a system towards an instability point remains at  
present a totally open question. 
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